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ABSTRACT: The field of perovskite optoelectronics and elec-
tronics has rapidly advanced, driven by excellent material properties
and a diverse range of fabrication methods available. Among them,
triple-cation perovskites such as CsFAMAPbI3 offer enhanced
stability and superior performance, making them ideal candidates
for advanced applications. However, the multicomponent nature of
these perovskites introduces complexity, particularly in how their
structural, optical, and electrical properties are influenced by
thermal annealing�a critical step for achieving high-quality thin
films. Here, we propose a comprehensive mechanistic picture of the
thin film formation process of CsFAMAPbI3 during the thermal annealing step through systematic and comparative analyses,
identifying two key thermally induced phase transitions: the crystallization of the perovskite phase facilitated by solvent evaporation
and the formation of the PbI2 phase due to thermal decomposition. Our results reveal that the crystallization process during
annealing proceeds from the surface to the bulk of the films, with a significant impact on the film’s morphology and optical
characteristics. Controlled annealing enhances field-effect transistor device performance by promoting defect passivation and
complete perovskite crystallization, while prolonged annealing leads to excessive PbI2 formation, accelerating ion migration and
ultimately degrading device performance. These insights offer valuable guidance for optimizing the design and performance of
perovskite-based electronic and optoelectronic devices.
KEYWORDS: perovskite, field effect transistor, thermal annealing, phase conversion, defect passivation

■ INTRODUCTION
The field of perovskite optoelectronics and electronics,
including applications such as solar cells,1,2 light-emitting
diodes,3,4 photodetectors,5,6 and field-effect transistors
(FETs),7,8 has experienced rapid growth due to its advantages
owing to their unique material properties and versatile
fabrication methods. Specifically, triple-cation perovskites,
such as CsFAMAPbI3, have attracted significant attention for
their enhanced stability and superior performance across
various applications.9,10 The inclusion of the MA cation,
known for its high dipole moment, in FA perovskites has
improved structural stability by enhancing interactions with
PbI6 octahedra.

11 Furthermore, the addition of the Cs cation in
these triple-cation perovskites further enhanced stability. This
is primarily due to the small ion size of Cs, which effectively
adjusts the Goldschmidt tolerance factor, leading to a more
stable structure.9

Many of these perovskite-based devices require, however,
the perovskite active material to be in the thin film form to
allow efficient charge transport across the active layer. This
condition thus necessitates the exploration of various methods
for efficient thin film deposition and, more importantly,
understanding of the exact mechanism behind thin film

formation and growth in order to allow control of the film
quality resulting from such deposition techniques.
In this aspect, spin-coating of solutions containing the halide

precursors on a substrate, followed by antisolvent treatment
and thermal annealing, has largely been the method of choice
for fabricating perovskite thin films due to its simplicity and
scalability.12 However, despite a large number of studies on the
influences of processing conditions (solvent, antisolvent,
substrate, precursor, etc.) on the resulting films,13−15 the
exact process of perovskite film formation from precursors is
still not completely understood with heavy reliance on
empirical anecdotes.
Here, we wish to tackle this problem by focusing on the

effect of the thermal annealing step following spin-coating on
the resulting structural, optical, and transport properties of
triple-cation perovskite thin films. Thermal annealing step is
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crucial for removing of the residual solvent for perovskite
precursors such as dimethylformamide (DMF) and dimethyl
sulfoxide (DMSO), as well as for initiating supersaturation, a
key process for nucleation and structural reorganization.16,17

This transformation converts the spin-coated film from an
amorphous or semicrystalline state into a favorable crystalline
form with large grains.18,19

However, the structural changes induced by thermal
annealing can also lead to nonuniformities within the thin
films,20,21 which are particularly problematic in the case of
triple-cation perovskites. These materials, being multicompo-
nent, are more susceptible to variations during the annealing
process due to the different thermal sensitivities of the Cs, FA,
and MA cations, as well as their varying interactions with
solvents like DMF and DMSO during the spin-coating
process.22,23 Such nonuniformities pose significant challenges,
as they can critically affect the optical and electronic properties
of thin films. Therefore, a thorough understanding of the
structural transformations during thermal annealing and how
these changes affect the optical and electrical properties of the
films is crucial for optimizing the performance of perovskite-
based devices. By employing a comprehensive set of structural,

optical, and electrical analyses, as illustrated in Figure 1a, this
research provides an in-depth understanding of the film’s
structural evolution during annealing. These analyses also
explore how the observed structural changes influence the
performance of FET devices fabricated by using the annealed
films.
The key idea of this research is to understand the dual

impact of thermal annealing on the crystallization process of
CsFAMAPbI3 films (Figure 1b). First, annealing leads to the
disappearance of intermediate phases, which is crucial in
determining the crystallization direction and overall film
structure.24,25 Second, the thermal decomposition of organic
cations results in the formation of PbI2, which plays a
significant role in passivation and charge transport within the
films.26,27 By elucidating these processes, the research not only
enhances our understanding of perovskite thin film formation
but also provides critical insights into how these structural
changes affect the performance of devices such as FETs
fabricated from these films. This research is driven by the need
to clarify these processes, offering fundamental insights that
can help optimize the performance of perovskite thin films in
various practical applications.

Figure 1. (a) Role of thermal annealing and related material properties. (b) Main phase conversion processes during thermal annealing. Schematics
of (c) triple-cation perovskite structure and (d) film fabrication process.
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■ RESULTS AND DISCUSSION
The perovskite films used in this study are triple-cation
perovskite structures, where the A-site in the ABX3 perovskite
lattice is occupied by a mixture of Cs+, MA+ (methylammo-
nium), and FA+ (formamidinium) cations, the B-site is
occupied by Pb2+ ions, and the X-site is filled with I− ions,
as illustrated in Figure 1c. The film fabrication process
followed a widely adopted method in perovskite research,28,29

involving the use of a solution containing DMF and DMSO
solvents mixed with halide precursors, which was deposited
onto a substrate. This was followed by spin coating, during
which an antisolvent dropping process was employed to induce
supersaturation.30,31 Finally, the films underwent thermal
annealing at 100 °C to achieve the desired crystallization
(Figure 1d). Detailed information regarding the film
preparation process can be found in the Supporting
Information.
To investigate the overall structural changes in CsFAMAP-

bI3 films induced by annealing, X-ray diffraction (XRD)
measurements were conducted at various annealing times
(Figure 2a). Initially, the as-cast film exhibited the A2Pb3I8·
2DMSO intermediate phase (referred to as the DMSO
intermediate phase hereafter), characteristic of a one-dimen-
sional structure within a hexagonal crystal system.32 Previous
studies have shown that both Cs and MA, which occupy the A-
site, readily form the A2Pb3I8·2DMSO intermediate

phase,24,33−35 while FA, also an A-site cation, is less likely to
participate due to its lower Lewis acidity.36 Our analysis
suggests that this intermediate phase is primarily composed of
MA, with minor contributions from Cs (details on the
composition of the intermediate phase and the resultant
vertical location of A-site cations in the film are provided in
Figure S2 and Supporting Information Section 2.). As the
annealing progressed, this intermediate phase gradually
disappeared, revealing the transformation to the perovskite
structure. Further annealing induces the formation of PbI2 (see
the inset in Figure 2a), which will be discussed in more details
later. To further examine the film morphology, atomic force
microscopy (AFM) was employed (Figure 2c). Consistent
with the XRD results, the as-cast film displayed rod-like
DMSO intermediate phases which were no longer present in
the annealed samples.37,38 These findings confirm that
annealing eliminates the DMSO solvent, leading to a phase
transformation from an intermediate phase to a perovskite
structure.
ToF-SIMS depth profiling demonstrated the directional

crystallization of the films during annealing, as shown in Figure
2b. Tracking S− ions as indicators for the presence of DMSO,39

we observed two distinct phenomena: First, the overall
intensity of S− signals diminished rapidly with increased
annealing time, which reflects the evaporation of the residual
DMSO molecules from the film. Second, the depth profiling

Figure 2. (a) XRD spectra, (b) time-of-flight secondary ion mass spectrometry (ToF-SIMS) depth profile of sulfide ion, and (c) AFM images for
CsFAMAPbI3 films with different annealing times.
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analysis of the as-cast film revealed that the S− concentration
was notably higher in the bulk than in the surface region.
These observations confirm that DMSO solvent molecules
have evaporated from the surface during spin-coating, while
the bulk retains the DMSO intermediate phase before the
thermal annealing step. Although the DMSO intermediate
phase is present at the surface, as indicated by the 0.5° grazing
incidence XRD (GI XRD) spectrum in Figure S1a, which
reflects the structural characteristics near the surface (as eq S1
and Figure S1b indicate), unlike in the XRD spectra in Figure
2a, the DMSO intermediate phase predominantly exists within
the bulk of the film, as shown in Figure 2b. Collectively, these
results suggest that the crystallization process, driven by
solvent evaporation during annealing, proceeds from the top
surface toward the bulk of the film, with the intermediate phase
in the bulk ultimately converting to the perovskite phase.
The above findings can be corroborated with steady-state

photoluminescence (PL) measurements of triple-cation per-
ovskite films. As previously noted, the transformation from the
DMSO intermediate phase to the perovskite phase occurs from
the surface to the bulk of the films. To observe the effects of
this transformation, measurements were carried out in two
configurations (see Figure 3c): (1) one examining through the
top surface of the perovskite layer (front PL) and (2) the
bottom surface through the glass substrate (back PL).
The analysis of the PL intensity from films annealed for

different durations revealed a significant trend. Figure 3a,b
displays the front PL and back PL spectra, respectively,
measured with 450 nm excitation. In as-cast films, incomplete

perovskite crystal growth is evident, as shown by a slight blue
shift in the PL peak in Figure 3a,b, likely due to size
effects.40−42 The high PL intensity of as-cast films can be
attributed to the DMSO intermediate phase, which acts as a
passivating agent by impeding the transfer of photogenerated
charge carriers in crystal nuclei.33 This phase forms a Type 1
heterojunction with the perovskite (Figure 3d), resulting in
effective PL characteristics. Additionally, there is a clear
reduction in the PL intensity with an increased annealing time,
and this reduction is more pronounced in the back PL
measurements, indicating that the annealing-induced crystal-
lization process may differ between the surface and the bulk of
the films. As observed in Figure 2b, this phenomenon can be
attributed to the DMSO intermediate phase being more
prevalent in the bulk than at the surface. Consequently, as this
intermediate phase transforms into the perovskite phase, the
passivation effect diminishes more significantly in the bulk,
leading to a more pronounced reduction in the PL intensity in
the back PL measurements. Notably, this passivation effect is
further confirmed by the fact that the larger amount of the
DMSO intermediate phase in the bulk initially causes the PL
intensity of the as-cast film to be higher in the back PL
measurement compared to the front PL measurement. The
solvent effect can be supported further by our comparative
annealing test between thermally evaporated and solution-
processed perovskite films with a simpler yet analogous
composition, MAPbI3, which has been extensively studied
and well-established in both thermal evaporation and solution-
processing methods.43,44 Unlike the solution-processed films

Figure 3. (a) Front side and (b) back side PL spectra of CsFAMAPbI3 films deposited on glass with different annealing times under 450 nm
excitation. (c) Schematic of the PL measurement configuration and (d) the suggested mechanism addressing high PL intensity of as-cast films
(green: DMSO intermediate phase and brown: perovskite phase). (e) PL spectra of MAPbI3 films deposited on glass by thermal evaporation before
and after annealing under 450 nm excitation (inset: schematic representing experimental configuration of thermal evaporation of the perovskite).
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(Figure S10), no reduction in PL intensity with annealing was
observed in the thermally evaporated films (Figure 3e). This
confirms that the reduction in PL intensity in the solution-
processed perovskite films upon annealing is indeed due to the
gradual conversion of the DMSO intermediate phase to the
perovskite phase.
C o n s i d e r i n g o u r t a r g e t s t o i c h i om e t r y o f

Cs0.05FA0.17MA0.78PbI3, any deviations from the stoichiometric
ratio can be attributed to the formation of other phases
induced by thermal annealing. As shown in Figure 2a, we
anticipate the formation of the PbI2 phase during the annealing
process, which can be confirmed through compositional
analysis via X-ray photoelectron spectroscopy (XPS) measure-
ments. Specifically, the relative atomic ratios of nitrogen (N)
and iodine (I) to lead (Pb) provide insights into the relative
compositional shifts caused by thermal decomposition during
the annealing of the triple-cation perovskite film, which may
provide information toward the relative cation deficiency and
the formation of different phases during the thermal annealing
(Pb 4f and I 3d XPS spectra are included in Figure S3).
The N 1s XPS spectra in Figure 4a, with two distinct peaks

centered at approximately 400.1 eV (C�N) and 401.8 eV
(C−N), clearly indicate the coexistence of both FA and MA
components.22,27 The area ratios of these N 1s peaks after
various annealing durations are presented in Figure 4b and
detailed in Table S5 (R2 > 0.99). A clear decreasing trend in
the C−N/C�N ratio is observed in Figure 4b, which can be
attributed to the thermal decomposition of MA (in the form of
MAI) into CH3I and NH3, consistent with previously reported

results.22,27 This thermal decomposition of MA is further
corroborated by the decreasing N/Pb ratio observed in Figure
4c. The decrease in the I/Pb ratio can also be linked to the
thermal decomposition of MA, potentially leading to the
formation of PbI2 as MA decomposes, replacing the existing
CsFAMAPbI3 phase. Given the surface sensitivity of XPS,
these elemental compositional changes suggest that annealing
causes the surface to become deficient in MA while being
relatively enriched in Pb.
Furthermore, front PL and back PL measurements were

performed using a shorter excitation wavelength of 398 nm to
examine more surface-sensitive optical properties during the
thermal annealing influenced by PbI2 formation due to the
anticipated MA decomposition. A higher absorption coefficient
at 398 nm excitation (unlike the 450 nm data shown in Figure
3a,b) results in a shallower optical penetration depth according
to the Beer−Lambert law, thereby providing more surface-
sensitive optical information, as calculated in Figure S4b,c, and
Table S1 using absorbance data in Figures S4a and S5. The
front PL spectrum exhibited a distinct broad emission peak
between 600 and 700 nm (Figure 4d), which was absent in the
back PL (Figure 4e). We propose that this broad peak arises
from the phase transition at the interface between the PbI2
phase formed from MA decomposition and the perovskite
phase. Merdasa et al. reported a similar broad peak at 600 to
700 nm in films with a thermally evaporated PbI2 layer on
perovskite films, explaining that a reduced Pb−I−Pb angle in
the MA-deficient transition phase decreases orbital overlap
between Pb s orbitals and I p orbitals, resulting in an increase

Figure 4. (a) N 1s XPS spectra and (b) ratio of integrated area under the peaks assigned to C�N (FA) and C−N (MA and FA) in the N 1s
spectra of CsFAMAPbI3 films with different annealing times. (c) Change in the N/Pb and I/Pb ratios of CsFAMAPbI3 films with different
annealing times. Normalized (d) front side and (e) back side PL spectra of CsFAMAPbI3 films deposited on glass with different annealing times
under 398 nm excitation. (f) Schematics representing structural evolution and the corresponding Pb−I−Pb angle before and after annealing.
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in the bandgap, as depicted in Figure 4f.45,46 Similarly, we
suggest that this broad peak signifies the presence of an MA-
deficient transition phase rather than being directly attributed
to the PL of the PbI2 phase itself.
The presence of the PbI2 phase was also found to affect the

transport properties of the CsFAMAPbI3 film significantly, as
can be seen from time-resolved photoluminescence (TRPL)
and dark conductivity measurements. Figure 5a,b displays the
TRPL spectra of perovskite films measured on glass (non-
quenching) and indium tin oxide (ITO) (quenching)
substrates, respectively, after various thermal annealing
durations using an excitation wavelength of 405 nm. The
TRPL data from the glass substrate, fitted using a biexponential
function (see Table S2 for the fitting parameters), confirms
that the PL lifetime (tavg) increases with annealing time, which
can be attributed to longer-lived photogenerated electron−
hole pairs due to the defect passivation effect of the PbI2 phase
on the surface of the film.47,48 For the triple-cation perovskite
film on the ITO substrate (Figure 5b), the as-cast sample
shows nearly the same PL lifetime as that of the glass substrate
(Figure 5a). However, the PL lifetime of the annealed samples
on the ITO substrate varies only slightly, primarily due to the
quenching of the photogenerated electron−hole pairs at the
interface with the underlying ITO layer,49,50 which can be
supported by the steady-state PL spectra in Figure S6b. The
compiled trend of the PL lifetime according to the different
annealing times is shown in Figure 5c, which quantitatively
shows that tavg monotonically increases for the glass samples
from 1.789 ns (as-cast) to 11.01 ns (60 min annealed),
whereas in ITO samples, tavg slightly decreases until 40 min
annealing, after which tavg increases again for the 60 min

annealing. This may show an interplay between 1) the reduced
nonradiative recombination at the top interface and 2)
enhanced charge transport toward the bottom interface (and
therefore the greater degree of quenching by the ITO layer).
Both can be resulted from the conversion from the
intermediate to the perovskite phase, followed by the defect
passivation by the PbI2 phase formed during the annealing
process. Furthermore, the above observation can be under-
stood by the estimated optical penetration depth and carrier
diffusion length that, when combined, eventually exceed the
thickness of the perovskite film (Table S4), which confirms the
extent of bulk transport of the photogenerated carriers all the
way to the substrate (see Tables S2, S4, Figure S6, and eq S2 in
Supporting Information Section 5). The enhanced transport
can also be confirmed by the dark conductivity measurements
(Figure 5d and Table S6) which show that the electrical
conductivity increases with thermal annealing.
The effect of the thermal annealing can be highlighted by its

impact on the performance of a FET device based on
CsFAMAPbI3 films prepared by various annealing times. The
FET measurements were conducted on devices fabricated with
a bottom-gate, bottom-contact (BGBC) structure, featuring a
channel length of 200 μm and a channel width of 1 mm, using
the same batch of devices annealed for different time durations
in parallel. Interestingly, we found that the FET device
annealed for 0 min did not function properly as shown in
Figure 6a, indicating the absence of a fully formed perovskite
phase or insufficient crystallization. This may be attributed to
hindered charge transport caused by the residual DMSO
intermediate phase located in proximity to the perovskite−
dielectric interface. However, the device becomes functional as

Figure 5. PL decay curves for CsFAMAPbI3 films deposited on (a) glass and (b) ITO with different annealing times. (c) Average lifetimes
extracted from PL decay curves. (d) I−V curves for CsFAMAPbI3 films with different annealing times (Inset: Experimental setup for the
conductivity measurement, W: 1 mm, L: 0.2 mm).
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an FET device after 20 min of annealing, with the mobility
increasing until 40 min, before decreasing again for 60 min of
annealing treatment (Figure 6c and Table S7).
The increase in mobility observed from 20 to 40 min of

annealing can be attributed to the reduction in the
concentration of defects and the grain growth during the
conversion of the intermediate phase to perovskite phase
facilitated by the annealing process, as well as the passivation
effect of the PbI2 phase. However, as the annealing time
extended to 60 min, the mobility decreased, which is likely due
to the excessive formation of the PbI2 phase, which, while
initially beneficial for passivation, eventually becomes
detrimental to FET performance due to increased ion
migration of the PbI2 phase that can induce gate-field
screening.29,51−54

The transfer curve of the FET device annealed for 40 min
(Figure 6a) clearly shows an optimal device performance and
therefore the optimal annealing time with the output curve
(Figure 6b) showing an effective modulation of the channel
conductance at various gate voltages. The output curves for the

other annealing times are provided in Figure S7 for further
comparison.
Additionally, the threshold voltage of the FET devices was

observed to decrease progressively with increasing annealing
time, as shown in Figure 6d. This trend can be related to the
aforementioned deficiency of MA+ and an enrichment of Pb2+

induced by thermal annealing (Figure 4) that can result in
intrinsic n-type doping of the perovskite material.55−58 This
intrinsic doping is consistent with the reduction in the
threshold voltage observed, as it shifts the Fermi level closer
to the conduction band, making it easier to turn on the
channel. These results corroborate the earlier findings from the
CsFAMAPbI3 films, showing that while thermal annealing
improves device performance up to a certain extent, excessive
annealing leads to adverse effects, likely due to the over-
formation of the PbI2 phase (i.e., relatively low mobility path)
and the resultant ion migration. While the influence of changes
in contact resistance due to annealing could be considered,
they are unlikely to significantly contribute to the observed
mobility decrease. A previous study on 3D Pb-based perovskite

Figure 6. (a) Transfer characteristics of CsFAMAPbI3 in the BGBC structure after different annealing times and (b) output characteristic of
CsFAMAPbI3 at different gate voltages after 40 min annealing. Extracted (c) mobility and (d) threshold voltage after different annealing times. (e)
Schematics representing proposed overall mechanism under structural and compositional evolution during annealing.
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FETs10 showed that contact resistance is more pronounced in
devices with shorter channel lengths (∼20 μm), whereas its
impact becomes negligible for longer channels, such as the 200
μm devices employed in this work. Therefore, the reduction in
mobility is more likely due to the excessive PbI2 formation
rather than contact resistance. Additionally, the conductivity
measurement (Figure 5d) showed that the current did not
decrease with prolonged thermal annealing, indicating that the
contact resistance was not significantly affected by the
annealing process. To validate our measurements, we also
conducted FET measurements using a bottom-gate top-
contact (BGTC) structure, which showed similar device
characteristics to the BGBC structure and similar trends in
the variations of both mobility and threshold voltage with
thermal annealing (Figure S8). From this comparison, we note
that the previously discussed thermal annealing effects on the
structure and electrical transport properties of CsFAMAPbI3
can be directly related to the observed FET device character-
istics, irrespective of the device configuration. We note that
there is a finite hysteresis in clockwise direction in our
CsFAMAPbI3 FET devices similarly to previous reports on
perovskite FET devices.59−63 Although beyond the scope of
this work, we observe a smaller hysteresis in BGTC devices
(see Table S8), which might be related to the different extent
of interfacial polarization for bottom contact and top contact
devices.10,28,64−66

The findings from this work can be mechanistically
summarized, as shown in Figure 6e. In Stage I (spin-coating),
we find that a significant fraction of the film exists as the
A2Pb3I8·2DMSO intermediate phase. The initial effect of
thermal annealing (stage II) is the phase transformation to the
desired perovskite phase, primarily driven by solvent (DMSO)
evaporation, which occurs downward from the top surface.
The effect of further thermal annealing (Stage III) is a
complete conversion of the film to the CsFAMAPbI3
perovskite phase, followed by the vaporization of MA+ that
induces the local PbI2 formation at the top surface that can
passivate defects in the film if present at the right optimal level.
We expect that our findings can be further generalized to other
solution-processed perovskite materials that contain MA+ ions
and DMSO solvent, including solution-processed MAPbI3
perovskite for which the same trend can be observed (see
Figures S9−S13 and Table S3 in Supporting Information
Section 7).

■ CONCLUSIONS
Overall, this study aims to elucidate the role of thermal
annealing in the film formation process of a representative
spin-coated triple-cation perovskite CsFAMAPbI3 film and its
impact on FET device characteristics. A systematic and
comprehensive analysis of the structural, optical, and transport
properties of CsFAMAPbI3 films treated by different annealing
treatment durations highlights the structural and compositional
evolution of the CsFAMAPbI3 films. Our results demonstrate
that annealing initiates the phase conversion of the DMSO
intermediate phase to the desired perovskite phase driven by
solvent evaporation. The optical and structural analyses reveal
the downward crystallization from the top surface that
gradually progresses toward the bulk. Importantly, this study
highlights the intricate balance required during the annealing
process; while moderate annealing enhances the film quality by
reducing the number of defects and promoting grain growth,
excessive annealing leads to over-formation of the PbI2 phase,

which can be detrimental to device performance. This effect is
particularly evident in the FET devices, where field-effect
mobility improvement was clearly observed with a moderate
annealing treatment, owing to the defect passivation of the
PbI2 phase in addition to a complete crystallization of the
perovskite phase. Our findings present an intricate interplay
between thermally induced phase conversion, crystal growth,
and decomposition effects that underscore the critical role of
controlled thermal annealing treatment in optimizing the
performance of CsFAMAPbI3-based FET devices, which can
be extended to provide insights for the future development of
high-performance perovskite-based electronic and optoelec-
tronic devices.

■ EXPERIMENTAL SECTION
Materials. Cesium iodide (CsI), Formamidinium iodide (FAI),

Lead iodide (PbI2), DMSO, DMF, and Chlorobenzene were all
purchased from Sigma-Aldrich. Methylammonium iodide (MAI) was
purchased from GreatCell Solar. All materials were stored in a
nitrogen-filled glovebox and used as received without further
purification.

Solvent-Based Perovskite Film Preparation. The triple-cation
perovskite (Cs0.05FA0.17MA0.78PbI3) precursor solution with a
concentration of 0.8 M was prepared by dissolving 0.12 mmol (31
mg) of CsI, 0.41 mmol (70 mg) of FAI, 1.87 mmol (298 mg) of MAI,
and 2.4 mmol (1106 mg) of PbI2 in a solution comprising 2.4 mL of
DMF and 0.6 mL of DMSO. The triple-cation perovskite precursor
solution with a concentration of 1.2 M was prepared by dissolving
0.18 mmol (47 mg) of CsI, 0.62 mmol (105 mg) of FAI, 2.81 mmol
(447 mg) of MAI, and 3.6 mmol (1659 mg) of PbI2 in a solution
comprising 2.4 mL of DMF and 0.6 mL of DMSO.
For the MAPbI3 perovskite precursor solution, 2.4 mmol (382 mg)

of MAI and 2.4 mmol (1106 mg) of PbI2 were dissolved in a solution
containing 2.4 mL of DMF and 0.6 mL of DMSO.
All perovskite precursor solution mixtures were stirred overnight

within a nitrogen-filled glovebox and filtered with a 0.45 μm
poly(vinylidene difluoride) filter before use.
Substrates were cleaned by sonication in water, acetone, and 2-

propanol for 15 min each. Prepared precursor solutions were spin-
coated at 5000 rpm for 35 s, with chlorobenzene introduced at the
10th second as an antisolvent, followed by annealing at 100 °C for 0,
20, 40, or 60 min. Films for absorbance spectroscopy and AFM were
prepared on glass substrates (Eagle XG, Corning), while films for
XRD, GI-XRD, XPS, and ToF-SIMS were prepared on silicon
substrates. For steady-state PL and TRPL measurements, films were
prepared on both glass and ITO-coated glass substrates. (For TRPL
measurements, 1.2 M precursor was used to fabricate 400 nm-thick
perovskite films. Otherwise, every film fabrication used 0.8 M
precursor solution). Prior to spin coating for conductivity measure-
ments and BGBC FET fabrication, 4 nm Ti/40 nm Au electrodes
were deposited on bare glass and SiO2 substrate (300 nm SiO2 on n++
silicon), respectively, by thermal evaporation. The pattern of the
deposited electrodes is indicated in the inset of Figure 5d. For the
BGTC FET fabrication, the Au electrodes were deposited after the
spin coating of perovskite films. All prepared films were stored in a
nitrogen-filled glovebox for 1 day before characterization.

Solvent-Free Perovskite Film Preparation. For the mecha-
nochemical synthesis of MAPbI3 powder used in thermal evaporation
(Figure 3e), 3.6 mmol (572 mg) of MAI and 3.6 mmol (1660 mg) of
PbI2 were placed into an alumina jar with two balls, each 28.65 g and
1.9 cm in diameter. Subsequently, the jar was shaken by ball mill
equipment (Retsch, Mixer Mill MM-400) at a frequency of 20 Hz for
90 min 1.05 mmol (650 mg) of synthesized MAPbI3 powder and 0.52
mmol (83 mg) of MAI were loaded on a tungsten boat inside a
vacuum chamber, 30 cm below the cleaned glass substrates. The
tungsten boat was quickly heated by passing a current of 140 A
through it for 2 min.
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Structural Characterizations. Normal mode XRD was per-
formed using an X-ray diffractometer (Bruker, New D8 ADVANCE),
and GI mode XRD was performed using an X-ray diffractometer
(PANalytical, Xpert-Pro), both employing a Cu Kα radiation source
with a wavelength of 1.5406 Å. The thickness and top-view surface
profile of the perovskite films were characterized by an atomic force
microscope (Park Systems, NX-10).

Compositional Characterizations. The vertical distribution of
elements was analyzed by a time-of-flight secondary ion mass
spectrometer (ION-TOF, TOF.SIMS 5) with a Bi+ primary source
(30 keV) and an Ar gas cluster (Ar1100+) ion source as the etching
source (5 keV) at the National Center for Interuniversity Research
Facilities (NCIRF) in Seoul National University. Depth profiles were
normalized to total counts.67 XPS was performed using an X-ray
photoelectron spectrometer (Kratos Analytical, AXIS Supra) at the
NCIRF.

Optical Characterizations. Steady-state PL measurements were
conducted with a spectrofluorometer (JASCO, FP-8550) utilizing a
Xe arc lamp with 398 and 450 nm excitation wavelengths.
Measurement through the substrate side (Back PL) and perovskite
side (Front PL) were both conducted as in Figure 3c. TRPL
measurements were performed with a spectrophotometer (Pico-
Quant, FlouTime 300) with a 405 nm excitation wavelength. Carrier
lifetimes were extracted by biexponential fitting using eq 1, in which
I(t), t1, t2, A1, A2, and B are the PL intensity at time t, decay time
constants, corresponding decay amplitudes, and a constant.68

Absorbance spectra were acquired by using a UV−vis spectropho-
tometer (JASCO, V-770).

= + +I t A A B( ) e et t t t
1

/
2

/1 2 (1)

Electrical Characterizations. Conductivity measurements were
conducted using a semiconductor parameter analyzer (HP Agilent,
4156B) in a vacuum environment (ca. 10−3 Torr), which can probe
down to 1 fA. The current was measured as voltage double sweeps
between −2 and 2 V at a sweep speed of 200 mV/s. Prior to the
characterization of FETs, each device was prescratched, with a tip to
minimize fringing effect and gate leakage.69 The transfer character-
istics of the FETs were examined by a semiconductor parameter
analyzer (HP Agilent, 4155C) in the pulsed operation mode (with a
pulse width of 1 ms and a pulse period of 1 s), while the output
characteristics were measured under continuous operation mode. All
FET measurements were held in a vacuum environment (ca. 10−6

Torr), following common methodologies in the field to exclude any
damage and effects from degradation.7,10,53,70 The saturation
mobilities were calculated through eq 2, where L, W, C, IDS, and
VGS are the channel length, channel width, areal dielectric capacitance,
drain current, and gate voltage, respectively. The threshold voltages
were extracted using linear fitting of | |IDS with respect to VGS.
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