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Abstract

Over the past decade, metal halide perovskites (MHPs) have received great atten-

tion, triggered by the tremendous success of their record-breaking power conver-

sion efficiency values in solar cells. Recently, there have been significant interests

in fully utilizing their unique properties by exploring other device applications

including thermoelectrics, which is promising due to their ultralow thermal con-

ductivity and high mobility relative to their competitors among solution-

processable materials. However, the performance of MHP thermoelectrics reported

so far falls significantly short of theoretical predictions, as the doping levels

achieved to date are typically below the optimum values for maximizing the ther-

moelectric power factor, indicating the need for effective electrical doping strate-

gies. In this critical review, recent studies aimed at enhancing the thermoelectric

properties of MHPs are discussed, with a focus on the relatively under-explored

area of electrical doping in MHPs. The underlying charge transport mechanism

and doping effect on transport are also examined. Finally, the challenges facing

MHP thermoelectrics are highlighted, and potential research visions for achieving

highly efficient thermoelectric conversion based on MHPs are offered.
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1 | INTRODUCTION

Metal halide perovskites (MHPs) have attracted tremen-
dous attention in optoelectronic applications due to their
outstanding properties such as high photoluminescence

quantum yield (PLQY), high absorption coefficient,
defect tolerance, tunable bandgap, and facile solution
processing.1–11 In just over a decade, solar cells based on
MHPs have achieved an impressive 25.7% efficiency,1 and
green light-emitting diodes (LEDs) have reached a high
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external quantum efficiency (EQE) of 28.9%,10 demon-
strating the potential of MHPs as a next-generation
energy and display material. The most extensively studied
structure is a three-dimensional (3D) structure, with the
formula of ABX3, where A is a monovalent organic/
inorganic cation, B is a divalent metal cation, and X is a
halide anion. Furthermore, MHPs with various low-
dimensional structures, such as two-dimensional
(2D) Ruddlesden-Popper (RP) phase (A0

2An-1BnX3n+1),
and zero-dimensional (0D) structures (A4BX6, A2BX6,
A3B2X5, etc.), have also been widely studied, each posses-
sing unique and crucial characteristics relevant to specific
applications.12–18

In addition to their excellent optical properties, MHPs
are known for their ultralow thermal conductivity,19–22

which makes them promising materials for next-generation
thermoelectric applications that convert thermal energy
into electrical energy, enabling the use of waste heat.
The “phonon glass electron crystal” structure of MHPs
potentially enables efficient charge transport while mini-
mizing heat transport,23 resulting in both a high electrical
conductivity and low thermal conductivity. Furthermore,
MHPs exhibit a high Seebeck coefficient at room tempera-
ture, highlighting their exceptional ability to generate ther-
moelectric voltage based on temperature differences. This

advantage, combined with their ultralow thermal conduc-
tivity and high charge carrier mobility, is expected to pro-
vide high thermoelectric performance.19–21,24 Apart from
their performance-related advantages, MHPs offer a cost-
effective alternative to traditional inorganic thermoelectric
materials due to their simple fabrication and low material
costs, potentially driving more widespread adoption of ther-
moelectric technology. The material versatility of MHPs
also allows for tailored performance based on specific appli-
cation requirements, providing opportunities for further
optimization.17,18 Moreover, MHPs are expected to exhibit
high thermoelectric conversion efficiency at close to room
temperature, making them a crucial factor for the success-
ful implementation of various wearable applications.25,26

As can be seen in Figure 1A, inorganic materials
such as Bi2Te3,

27 PbTe,28 SnSe,29 Skutterudites,30 and
Half-Heusler compounds31 have been the subject of
extensive research as thermoelectric materials, but
their commercialization has been hindered by several
limitations including their high production cost, the
toxicity of constituent elements, brittleness, and
limited abundance. Although organic materials,
represented by poly(3,4-ethylenedioxythiophene)-poly
(styrenesulfonate) (PEDOT:PSS),32 have also been
explored for thermoelectrics, their performance is

FIGURE 1 (A) Timeline and progress in thermoelectric conversion efficiency represented for conventional inorganic27–31,120–145 and

organic thermoelectric materials,32,146–157 as well as the emerging MHPs.21,22,51,54,67,74,158–162 The gray dashed line represents the theoretical

ZT range of MHPs,33–36 and the gray dashed box in the bottom right corner indicates the experimental values obtained for MHPs.

(B) Schematic illustration showcasing the advantages of MHPs for thermoelectrics. (C) Prospect of optimizing ZT through carrier

concentration tuning via doping from the current status to the ideal range, highlighting the needs for effective doping methods. (D) Key

conceptual development stages of conventional inorganic thermoelectric materials, with MHPs in the early stages of research requiring

investigation into electrical doping strategies.
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limited by their relatively low mobility, limiting their
efficiency as thermoelectric generators. On the other
hand, MHPs offer a promising alternative for thermo-
electric applications due to their unique properties,
combining the high mobility24 of inorganic materials
with the ultralow thermal conductivity19–21 and facile
processing4,10,11,14 of organic materials (see Figure 1B),
making them a strong candidate for next-generation
thermoelectric materials supported by various theoreti-
cal predictions.33–36

However, the low electrical conductivity, and there-
fore a low power factor, of MHPs has been one of the
main limiting factors for realizing high thermoelectric
figure of merit (ZT), unlike numerous theoretical results
previously reported in the field,33–36 mainly due to the
absence of effective doping methods for controlling their
carrier concentration (see Figure 1A,C). Previous doping
studies in MHPs have mainly focused on improving their
optical properties or film quality and stability, whereas
tackling the inherent electrical doping issues in MHPs
has not been particularly emphasized.37–40

In this critical review, we attempt to address the
importance of developing effective doping strategies for
MHP thermoelectrics and the resulting impact on charge
transport mechanisms. While previous reviews have
mainly focused on the general thermoelectric41,42 and
thermal transport properties43,44 of MHPs, a gap remains
in directly addressing electrical doping strategies45–48 for
MHP thermoelectrics and their resulting impact on
charge transport. To fill this gap, we first discuss three
types of electrical doping methods implemented in MHPs
and recent studies on doping-enhanced thermoelectric
performance of MHPs. Subsequently, we provide insights
into the charge transport mechanism under the influence
of electron–phonon coupling in MHPs and discuss differ-
ent models proposed. Finally, we address main doping
challenges both at mechanistic, materials- and device-
level for advancing the field of MHP thermoelectrics, fol-
lowed by research visions for potential breakthroughs in
the field.

2 | ELECTRICAL DOPING IN MHP
THERMOELECTRICS

The thermoelectric performance of a material is quanti-
fied using the dimensionless figure of merit, ZT.49 A high
ZT value indicates that a material is more efficient at
converting heat into electricity. ZT is defined by the fol-
lowing equation:

ZT¼ σS2

κ
T ð1Þ

where S is the Seebeck coefficient, σ is the electrical con-
ductivity, κ is the thermal conductivity, and T is the abso-
lute temperature. Therefore, in the case of conventional
inorganic thermoelectric materials, breakthroughs in ZT
values have been achieved by first optimizing the electri-
cal doping range, which is directly related to electrical
conductivity, then minimizing thermal conductivity
through nanostructuring, and finally enhancing the See-
beck coefficient using band engineering (see Figure 1D).
This also indicates that MHPs, which possess promising
properties as thermoelectric materials, are currently at
the stage of developing an appropriate electrical doping
method, which is considered the first step out of the key
historical developments of conventional thermoelectrics.
In one theoretical study by Filippetti et al.,34 the ZT value
reached its peak with a value between 1 and 2 at the car-
rier concentration of 1019 cm�3 and a temperature of
300 K, while the experimental values appear significantly
lower in contrast (see Table S1 in the Supporting
Information for a summary of the enhanced thermo-
electric performance achieved through current doping
methods). If effective doping techniques emerge, as in
the case of organic thermoelectrics (ZT > 0.4),32 MHPs
with their generally favorable crystalline structures for
charge transport could potentially achieve higher ZT
values than organic thermoelectric materials. In this
section, we discuss electrical doping methods and dop-
ants that have been applied to MHPs, focusing on their
impact on thermoelectric properties. Electrical doping
methods for MHPs can be categorized into three main
types (see Figure 2A–C), based on the mechanism for
generating excess charge carriers within the MHP crys-
tal structure and the location of dopants: intrinsic defect
doping (self-doping), extrinsic defect doping (substitu-
tional doping and interstitial doping), and charge trans-
fer doping (molecular doping).

2.1 | Intrinsic defect doping

The most common method for increasing charge concen-
tration in MHP thermoelectrics is through intrinsic defect
doping, also known as self-doping. As shown in
Figure 2A, the self-doping originates from the formation
of charged intrinsic defects, such as vacancies or intersti-
tials within the ABX3 structure,45 which can generate
excess charge carriers, and thereby enhance electrical
conductivity. For example, Sn-based MHPs are prevalent
as thermoelectric materials because they can achieve
higher electrical conductivity compared to Pb counter-
parts (see Figure S1 in the Supporting Information),
mainly due to the facile p-type doping introduced by
Sn2+ oxidation50:
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FIGURE 2 (A) Schematic representation of intrinsic defect doping, with vacancies indicated by dashed line circles and halide

interstitials, acting as dopants. (B) Schematic of extrinsic defect doping, where the blue and orange atoms acts as n-type dopants at an

interstitial site and at grain boundary, respectively. The pink and green atoms represent B-site substitutional dopants, functioning as donors

and acceptors, respectively. (C) Schematic of charge transfer doping at the perovskite surface by a molecular dopant. (D) Calculated intrinsic

acceptor (pink) and donor (blue) transition energy levels for MAPbI3. Adapted with permission.60 Copyright 2014, AIP Publishing.

(E) Truncated periodic table of elements summarizing dopants that commonly function as interstitial (blue) and B-site substitutional donors

(pink) and acceptors (green) in MAPbI3. (F) HOMO and LUMO of representative n-type and p-type molecular dopants. (G) Temperature

dependence of electrical conductivity (top) and ZT (below), with differently colored curves representing varying degrees of oxidation.

Reproduced with permission.51 Copyright 2019, Springer Nature. (H) Electrical conductivity at different temperatures for undoped and Bi-

doped MAPbBr3 thin films. Reproduced with permission.66 Copyright 2019, John Wiley and Sons. (I) Electrical conductivity and number of

charge carriers for Bi-doped MAPbBr3 single crystals. Reproduced with permission.67 Copyright 2020, Royal Society of Chemistry. (J) Charge

carrier concentration, electron and hole mobilities (top) and ZT values (bottom) of F4-TCNQ doped FASnI3 thin films as a function of

doping level. Reproduced with permission.74 Copyright 2020, Royal Society of Chemistry.

4 of 17 KIM ET AL.

 25673173, 2023, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/eom

2.12406 by Seoul N
ational U

niversity, W
iley O

nline L
ibrary on [13/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



SnSn IIð ÞþO2 !V0
SnþSn IVð ÞO2þ2hþ

!V2�
Sn þ4hþþSn IVð ÞO2 ð2Þ

The heavy p-type doping in Sn-based MHPs results
from the lower redox potential of the Sn2+/Sn4+ pair
(+0.15 V) compared to the Pb2+/Pb4+ pair (+1.67 V) in
Pb-based MHPs.50 To adjust the electrical conductivity of
Sn-based MHPs through self-doping, the degree of oxida-
tion is tuned primarily by varying the air exposure time
(see the top figure of Figure 2G). In a study by Liu
et al.,51 the electrical conductivity of CsSnI3 films was
increased through Sn-based self-doping, while ambient
stability was improved using a SnCl2 surface protection
layer. By optimizing self-doping in the SnCl2 surface pro-
tection layer, which was deposited by seed layer plus
sequential deposition method, they enhanced the ther-
moelectric performance of the underlying CsSnI3 film as
it gained free charges from the SnCl2 layer, ultimately
achieving ZT of 0.14 at room temperature (see the bottom
figure of Figure 2G). This approach effectively doped the
active CsSnI3 layer in bulk while minimizing dopant-
induced scattering, similar to modulation doping,52,53

due to the physical separation between the doped layer
(i.e., SnCl2) and the channel (CsSnI3). While this
approach effectively raises the electrical conductivity of
Sn-based MHPs, it also leads to degradation due to oxida-
tion, making it crucial to develop doping techniques that
ensure both tunability in conductivity and material
stability. Qian et al.54 demonstrated the enhancement
of stability in Sn self-doped samples by synthesizing
CsSn1-xGexI3 through solid-state sintering, achieving a ZT
of 0.123 at 473 K and approximately 0.09 at room
temperature. This work was based on a previous report
in which the alloying of Sn with Ge in CsSnI3 was system-
atically investigated for enhancing the ambient stability of
MHP-based solar cells.55 More specifically, it was con-
firmed by x-ray diffraction (XRD) analysis that in the case
of CsSnI3, 89% of it degraded into the non-perovskite
phases, δ-CsSnI3 and Cs2SnI6, after 5 h in ambient condi-
tions with a high relative humidity of �65% whereas
CsSn0.8Ge0.2I3 experienced only 33% degradation after 5 h.
Overall, this finding suggests that the stability improve-
ment strategies developed for solar cells and other opto-
electronic devices, where MHPs have been actively
studied, can also be effectively applied to thermoelectrics.

Similar intrinsic defect doping approaches can be
envisaged in Pb-based MHPs, such as methylammonium
lead iodide (MAPbI3).

56–59 Many intrinsic defects in
MAPbI3 are shallow with respect to the conduction
band minimum (CBM) and valence band maximum
(VBM), allowing them to act as dopants at room temper-
ature (see Figure 2D).60 In MAPbI3, the type of carrier is

determined by the relative defect density of representa-
tive intrinsic defects, such as I vacancy (VI), MA vacancy
(VMA), Pb vacancy (VPb), and I interstitials (Ii), which
can function as p-type or n-type dopants depending on
their respective transition energy levels.60 Although
such attempts have been rarely reported in MAPbI3-
based thermoelectrics, the defect formation energy in
MAPbI3 can be tuned by varying the ratio of MAI and
PbI2 in the precursor,56 which can be extended to devel-
oping intrinsic defect doping methods. Moreover, the
different transition energy levels of the existing defects
in MHPs with respect to their CBM and VBM also open
up routes for adjusting the sign of the Seebeck coeffi-
cient in MHPs. Liu et al.57 reported that it was possible
to switch between n-type and p-type conduction in
MHPs by creating a MAPbIxCl3-x with a partial substitu-
tion of I with Cl in MAPbI3. This is because the VMA,
which can act as a p-type dopant, plays a primary role
in single halide MAPbI3, but the introduction of Cl
reduces the defect density of VMA and n-type doping
becomes dominant.

Unlike in MHP-based solar cells, where preventing
the reaction at the interface between the MHP active
layer and the electrode is one of the most significant chal-
lenges for ensuring device stability,61 some previous
works in MHP thermoelectrics have attempted to utilize
this reaction. Wu et al.58 demonstrated that both p-type
and n-type doping could be achieved through the interac-
tion of metal and ion at the metal and MAPbI3 interface.
At the Au/MAPbI3 interface, VMA was induced by the
interaction between MA+ and Au atoms, resulting in
p-doping, while at the Ag/MAPbI3 interface, the reaction
of I� with Ag contact generated VI, leading to the forma-
tion of an n-doped region. Utilizing this effect, Xie et al.59

demonstrated a MAPbI3 single-crystal thermoelectric
module that employed doping induced by the reaction
between MAPbI3 and metal electrodes (Au and Ag). By
connecting the MAPbI3 single crystal to the ITO substrate
and depositing Au and Ag electrodes to form p-type and
n-type legs, respectively, the module generated a thermo-
electric voltage of 337 mV at 115�C, with the maximum
output power of 30 nW. This study not only aimed to
improve the thermoelectric performance of MHPs but
also directly demonstrated the potential of MHP as an
active material in thermoelectric modules, provided that
their electrical conductivity can be increased sufficiently.

2.2 | Extrinsic defect doping

Extrinsic defect doping is a method of introducing impu-
rity atoms into a crystal structure, which results in
the formation of extrinsic defect energy levels within

KIM ET AL. 5 of 17
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the band gap and the generation of extra charge carriers
(see Figure 2B). It is a widely employed type of doping
in semiconductor industry, where substitutional doping
in high-purity semiconductors has been successfully
implemented. However, in the case of MHPs, extrinsic
doping by atomic substitution has been challenging due
to the soft nature, which makes them prone to forming
intrinsic defects that consequently lead to charge
compensation.46

The possibility of interstitial or substitutional doping
generally depends on the ionic radius of the dopant, with
smaller ionic radius dopants tending to occupy interstitial
sites and those with an ionic radius similar to MHP con-
stituent elements (mostly B-site elements for electrical
doping, see Figure 2E) favoring substitutional sites, and
this relationship can be predicted using the Goldschmidt
tolerance factor.62 However, not only the ionic radius but
also factors such as dopant concentration and doping
method can influence the doping type and efficiency.63–65

For example, Ag can act as a p-type dopant when
substituting the Pb site in MAPbI3,

63,64 but they can also
function as an effective n-type dopant when segregated
on the surface, enabling metallic transport.65

Extrinsic doping of MHPs for thermoelectrics has
been rarely reported, except for a few reports on Bi dop-
ing.66,67 These studies all used Bi as an impurity dopant,
but they reported distinct doping effects, illustrating that
the impact of Bi doping varies depending on its location.
Xiong et al.66 fabricated devices by mixing BiI3 into a
MAPbI3 solution precursor and spin-coating the mixture,
finding that Bi dopants were present not only within
the grains but also at the grain boundaries. Bi-rich grain
boundaries were found to form charge transport
channels, which reduced the VPb concentration and trap
density, consequently enhancing mobility. In the 5% Bi-
doped film, the electrical conductivity increased by more
than two orders of magnitude (see Figure 2H), and the
power factor at 70�C increased by three orders of magni-
tude to 3.8 � 10�6 μW mK�2 compared to the pristine
film, albeit with the power factor being significantly
lower than the Sn counterpart. On the other hand, Tang
et al.67 synthesized single crystals by substituting Bi dop-
ants into the Pb site using an inverse temperature crystal-
lization method, and in 15% Bi-doped MAPb1-xBixBr3,
they confirmed n-type doping through a negative Seebeck
coefficient of �378 μV K�1, while observing a four-order
increase in the carrier concentration (see Figure 2I).
Overall, the above studies highlight the need for an effec-
tive doping strategy that considers multiple factors, such
as the doping method to enhance the incorporation of
dopants within the perovskite lattice, and dopant-MHP
material selection rules based on a mechanistic under-
standing of extrinsic defect doping, particularly the exact

doping sites (i.e., interstitials or substitutional sites within
the lattice or grain boundaries).

2.3 | Charge transfer doping

Charge transfer doping refers to the doping process that
occurs through charge transfer between a host semicon-
ductor and a molecular dopant (see Figure 2C).68,69 The
molecular dopants act as either donors or acceptors based
on their relative energy levels, where donating electrons
to the host is energetically favorable when their highest
occupied molecular orbital (HOMO) is above the CBM of
the MHP (i.e., n-type doping) and accepting electrons from
the host when their lowest unoccupied molecular orbital
(LUMO) is below the VBM of the MHP (i.e., p-type dop-
ing), as shown in Figure 2F. In MHPs, various molecular
dopants have been employed for molecular doping,
such as 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane
(F4-TCNQ)

70,71 and molybdenum tris-(1-(trifluoroacetyl)-
2-(trifluoromethyl)ethane-1,2-dithiolene) (Mo(tfd-COCF3)3),

72

which are strong molecular acceptors (p-type dopants),
and a strong molecular donor (n-type dopant)
bis(cyclopentadienyl)cobalt(II) (CoCp2).

73 Most of the
previous reports in MHPs have focused on surface
charge transfer doping of MHP films for enhancing
extraction of photogenerated carriers in solar cells70,72

and photodetectors.73 However, there has been only lim-
ited research on utilizing molecular doping in MHP
thermoelectrics. One notable example is a study by
Zheng et al.,74 in which doping formamidinium tin
iodide (FASnI3) thin film with F4-TCNQ showed a
markedly improved ZT value of 0.19 at room tempera-
ture from 0.03 in its pristine state. It was reported that
F4-TCNQ doping not only improved the charge carrier
concentration of the FASnI3 thin film but also enhanced
the mobility by affecting the film morphology
(i.e., reducing pinholes and larger grain sizes), enabling
better charge transport (see Figure 2J).

While molecular charge transfer doping has been
employed in MHPs based on the aforementioned energet-
ics criteria,48 it is not the sole parameter in consideration.
Especially for MHPs, molecular dopants have been
shown to dope host materials by residing at grain bound-
aries or surfaces, rather than entering the crystal struc-
tures of the host material,45,48 which limits the charge
transfer processes to the exteriors of grains. This is mainly
due to the size of dopant molecules, which are typically
too large to diffuse into the bulk of MHP films. This makes
it challenging to achieve effective bulk doping challenging
and limits the doping range, unlike conventional doping
in inorganic semiconductors. In addition, while their dop-
ing mechanisms, such as ion-pair formation or charge
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transfer complex formation,68,69 are relatively well under-
stood in organic semiconductors, the mechanisms by
which molecular dopants dope MHP host materials have
not yet been elucidated. Some studies have reported that
molecular dopants can also induce morphological changes
in MHPs,48 highlighting the importance of conducting fur-
ther studies that can reveal the doping mechanism via a
quantitative and systematic assessment of the doping effi-
ciency, and the resulting charge transport mechanism,
inclusive of the doping-induced structural changes.

3 | CHARGE TRANSPORT
MECHANISM IN MHPS FOR
THERMOELECTRICS

Understanding the charge transport mechanism of MHPs
is vital for optimizing thermoelectric performance, as the
figure of merit, ZT, directly depends on transport proper-
ties. Particularly, since mobility is proportionally related
to electrical conductivity, examining the charge transport
mechanism of doped MHPs is as crucial for thermoelec-
tric devices as developing efficient doping for MHPs. In
MHPs, the charge transport mechanism is shown to be
heavily influenced by lattice interactions (i.e., electron–
phonon coupling). The significant degree of electron–
phonon coupling in MHPs leads to the formation of
polarons, which are quasiparticles that form when an
electron or hole interacts with a polarization field,
causing the carrier to become localized while being
surrounded by a cloud of phonons.75–77 The formation of
polarons and the presence of dynamic disorder in MHPs
are considered responsible for the discrepancy between
the theoretical predictions of up to the order of
1000 cm2 V�1 s�1 and empirical values (up to approxi-
mately 100 cm2 V�1 s�1).20,24,78,79 In MHPs, both small and
large polarons are known to exist (see Figure 3A).75,76,80,81

Small polarons are charge states strongly associated with
local structural distortion and are induced by self-trapping
of an electron or hole in the crystal lattice due to its interac-
tion with lattice vibrations, resulting in incoherent hopping
transport, whereas large polarons are relatively delocalized
and exhibit more coherent band-like transport. In the field,
both small and large polarons in MHPs have been explored
using spectroscopic analysis and theoretical modeling
methods. Neukirch et al.82 provided theoretical evidence of
polaron formation in MAPbI3 using density functional the-
ory (DFT) calculations, from which small polarons in
MAPbI3 could be linked to the reorientation of MA+ molec-
ular dipoles and volumetric lattice strain (see Figure 3B).
Experimental results obtained through femtosecond impul-
sive stimulated Raman spectroscopy by Park et al.83 sup-
ported this claim, demonstrating that the formation of

small polarons in MAPbI3 is associated with structural
distortion of the inorganic Pb-I framework. Large polaron
formation has also been investigated by Miyata et al.,81

examining MAPbBr3 and CsPbBr3 single crystals using
time-resolved optical Kerr effect spectroscopy, which
showed that the PbBr3� sublattice deformation is primarily
responsible for large polaron formation in both crystals (see
Figure 3C). Theoretical research by Zheng et al.84 used a
tight-binding model based on DFT calculations to study
large polaron formation in MAPbI3 and its impact on
charge transport, demonstrating how dynamic disorder and
large polaron effects influence the electronic structure and
carrier dynamics.

The above studies on polaron formation in MHPs
have mainly focused on pristine MHPs without consider-
ing electrical doping. The effects of electron–phonon cou-
pling are expected to be critical in determining charge
transport, especially in doped MHPs, which are highly
relevant for thermoelectrics and become more complex
in the presence of impurity atoms for extrinsically doped
MHPs. Impurity atoms, used as dopants in extrinsic
defect doping, can greatly impact the local electronic
environment depending on whether they occupy either
interstitial or substitutional sites in the crystal lat-
tice.78,82,85 In the case of substitutional doping, the dop-
ant directly replaces an atom in the lattice, leading to
changes in the local bonding environment, which can
substantially impact the formation and characteristics of
polarons. Therefore, it is crucial to carefully consider
these effects when investigating charge transport in
MHPs doped by extrinsic defect doping.

Temperature dependence measurements have been a
powerful probe for investigating and distinguishing the
underlying charge transport models in disordered
semiconductors.86–88 In MHPs, numerous studies have
reported a negative slope in the mobility versus tempera-
ture behavior, indicating that phonon effects contribute
significantly to charge transport.89–91 The charge trans-
port models employed to account for the exact tempera-
ture dependence in MHPs discuss two possible
mechanisms: acoustic deformation potential (ADP) scat-
tering and Fröhlich interactions. While some experimen-
tal studies have suggested a T�1.5 dependence of mobility
(see Figure 3D),89–91 indicating the possible importance
of scattering by ADP, numerous reports highlight the role
of multiple phonon modes and strong phonon anharmo-
nicity in materials like MAPbI3, which can be better
described with Fröhlich-type polar interactions.75 Due to
the ionic character of MHPs, the contribution of Fröh-
lich-type polar interactions, which occur when the polari-
zation of the ionic lattices creates electric fields that
interact with the electrons in the system, is expected to
be dominant, as suggested by several studies.81,84,92–94
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This happens through the creation of an electric field by
longitudinal optical (LO) phonon modes, resulting in
polarization. While the Fröhlich interaction-based model
effectively predicts the mobility of MHPs at room temper-
ature, it has limitations in accurately predicting the

temperature-dependence of mobility. The model esti-
mates the temperature dependence of polaron mobility to
be around T�0.5 (see Figure 3D),94 differing from the
T�1.5 observed in experimental results.89 Although a
complete mechanism requires further investigation, this

FIGURE 3 (A) Schematic of small (left) and large (right) polarons in 3D MHPs. (B) Rotational motion of the MA molecule. (C) Changes

in Pb-Br-Pb bending and Pb-Br bond length with relaxed structures of MAPbBr3 upon positive (left) and negative (right) charge injection.

Reproduced with permission.81 Copyright 2017, American Association for the Advancement of Science. (D) Experimental89 and

theoretical94,95 temperature-dependent mobility plot of MAPbI3 Reproduced with permission.89 Copyright 2015, John Wiley and Sons.

Reproduced with permission.94 Copyright 2017, American Physical Society. Reproduced with permission.95 Copyright 2018, American

Chemical Society. (E) Schematic illustration of dynamic disorder in MHPs. In the static scenario (top), a perfectly periodic lattice leads to a

periodic energy landscape, whereas in the dynamic disorder scenario (bottom), fluctuations in the potential landscape induced by lattice

dynamics that transiently localize charges. Reproduced with permission.78 Copyright 2021, American Chemical Society. (F) Temperature-

dependent mobility for different scattering mechanisms. Histograms represent low temperature range 300–500 K (left) and high temperature

range 800–1000 K (right), obtained from 23 000 materials. Calculations were performed using the AMSET package at a carrier concentration

of 1017 cm�3 and are categorized into polar optical (PO), acoustic deformation potential (AD), and ionized impurity (II) scattering.88

Reproduced with permission from arXiv under the CC BY 4.0 License.
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discrepancy can be attributed to carrier localization due
to dynamic disorder (see Figure 3E). The dynamic disor-
der model can be employed to describe transiently local-
ized charge carriers resulting from a slowly evolving
electrostatic potential landscape driven by soft and
anharmonic lattice dynamics in MHPs and is known to
predict a T�2.11 dependence of mobility (see Figure 3D).95

Although the above polaron formation and transport
models provide valuable insights into the charge trans-
port of MHPs, a recent theoretical study has highlighted
that even within the same scattering mechanism, there
exists a finite variation in the temperature dependence of
mobility depending on the constituent elements
(i.e., optical phonon mode), band structure (e.g., non-
parabolic bands), temperature range and doping levels
(see Figure 3F).88 Therefore, a more sophisticated model
is needed for examining the charge transport in MHPs,
especially when additional factors such as ionic effects
and microstructural aspects are considered important.
Incorporating all these factors into a single model is chal-
lenging, but they are still highly relevant for the perfor-
mance of thermoelectric devices.

4 | DOPING CHALLENGES FOR
ADVANCING MHP
THERMOELECTRICS

4.1 | Mechanistic understanding of
electrical doping

A more comprehensive phenomenological understanding
of the excess carrier generation mechanism for each dop-
ing method in MHPs should be developed. This requires
in-depth quantitative and systematic analyses of each
doping process to extract doping efficiency (i.e., the num-
ber of free carriers generated per dopant) and to figure
out key selection criteria for appropriate dopants. This
requires understanding the energetics related to the
formation of dopant levels and their relative position
with respect to CBM or VBM to assess the probability of
their charging via thermal excitation both from theoreti-
cal and experimental studies. In addition to the simple
energetics requirements, accurately identifying the dop-
ing sites within MHPs (i.e., substitutional or interstitial
sites within the lattice or grain boundaries) will contrib-
ute to developing multi-scale structure–property relation-
ships for electrical doping in MHPs. Since we expect a
heavy doping regime is relevant for optimizing the ther-
moelectric performance of MHPs, which has rarely been
discussed in the field, the level of structural disorder
induced by the high dopant loading is expected to be crit-
ical in determining the free carrier generation.

4.2 | Understanding charge transport at
heavy-doping-regime

In addition to the doping mechanism that accounts for
the free carrier generation, doping is only meaningful
when the generated carriers can undergo efficient charge
transport in MHPs. Therefore, understanding doping
effects on charge transport at the heavy-doping-regime is
an essential milestone for advancing MHP thermoelec-
trics. In our review, we dealt in depth with the role of
electron–phonon coupling in charge transport mecha-
nisms in MHPs. In the heavy-doping-regime, carrier scat-
tering by dopant impurities (e.g., dopant counterions or
Sn4+ impurities) is expected to be significant or even
comparable, which complicates the transport model to
incorporate the Coulomb potential landscapes formed by
these impurities (see Figure 4). This is interrelated to con-
structing the aforementioned multi-scale structure–
property relationships, which have been underdeveloped
for understanding both doping and transport processes at
high doping levels. Specifically, the location and the spa-
tial distribution of dopants within MHPs can affect the
MHP crystal structure (e.g., microstrain effects96) or
microstructure (e.g., dopants concentrated at grain
boundaries97,98) and dictate the energetic disorder in the
electronic structure and the charge transport limited by
charged impurity scattering, which adds to the complex-
ity of the charge transport mechanism in MHPs in the
presence of intrinsic defects, grain boundaries, and com-
positional inhomogeneity.99

4.3 | Developing non-invasive bulk
doping strategies

The dopant selection criteria obtained from the above
mechanistic understanding can guide us toward con-
structing perovskite-dopant combinations and envisaging
doping strategies that can be (1) efficient (i.e., generating
many free carriers per dopant), (2) controllable (over a
wide range of carrier concentrations), and (3) preserving
the intrinsic charge transport properties (i.e., non-inva-
sive). The widely-used Sn self-doping strategy in Sn-based
MHPs, on the other hand, can effectively improve electri-
cal conductivity but compromises the composition, struc-
ture, and device stability of materials.50,100 Therefore, it is
necessary to explore doping strategies that utilize dopants
capable of controlling the electrical conductivity over a
wide range without adversely affecting other properties
by minimizing the structural degradation and disorder.
This leads to the necessity of bulk doping, for which
many challenges remain in bulk-incorporating dopants
in the perovskite structure, especially molecular dopants
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for charge transfer doping which are often too large to
penetrate into the bulk. To achieve this, effective doping
methods that take advantage of intrinsic structural fea-
tures could be envisaged, such as implementing bulk
doping by inserting molecular dopants into the “non-
active” organic spacer layer of 2D RP structures101 or uti-
lizing grain boundaries as paths for diffusing dopants in
MHP films.

4.4 | N-type thermoelectrics

The current records for n-type MHP thermoelectrics fall
significantly below that of p-type in terms of ZT, despite
many theoretical predictions favoring the thermoelectric
performance of n-type over p-type due to the band anisot-
ropy of CBM,34 which increases the power factor28,102,103

and a lower effective mass of electrons predicted from
DFT calculations36 that guarantee excellent charge
transport properties. One of the main reasons is the insuf-
ficient number of free carriers available for electrical con-
duction in n-type MHPs due to the lack of effective
n-type doping methods compared to, for example, p-type
doping by self-doping for Sn-based MHPs. Recently,
Lin et al.65 reported successfully implementing n-type
doping in MAPbI3 using metal halide dopants, which led
to a 3–4 order of magnitude increase in the dark current

of MAPbI3 thin films. However, while this level of
conductivity is quite high among n-type MAPbI3, it is still
lower than 14 S cm�1 observed in Sn-based MHPs,74 for
which one of the highest ZT values among MHPs to date
was reported. In order to develop all-MHP-based thermo-
electric generators, it is crucial to conduct studies on
n-type doping, as having balanced ZT values between p-
and n-type MHPs is essential for constructing efficient
thermoelectric generators.

4.5 | Material and doping stability

While MHPs are primarily intended for use in low-
temperature thermoelectric devices operating near room
temperature, ensuring both ambient and thermal stability
of MHPs is a crucial challenge, especially for Sn-based
MHPs, which have demonstrated the best thermoelectric
performance to date but are susceptible to degradation
due to ready oxidation.104 Sn vacancy-induced self-
doping in Sn-based MHPs leads to thermoelectric perfor-
mances that are notably higher compared to Pb-based
MHPs, underscoring the need for the development of
other doping methods (see Figure S1 in the Supporting
Information). To achieve long-term material and doping
stability, more stable alternatives can be explored, such
as Pb-based MHPs, low-dimensional MHPs like 2D or 0D

FIGURE 4 Schematic illustration depicting the challenges (dark gray) and new opportunities (blue) of MHP thermoelectrics.
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structures, and all-inorganic MHPs (i.e., not containing
volatile organic cations). Recent studies have also indi-
cated that double perovskites and other low-dimensional
MHPs could offer higher stability while possessing desir-
able thermoelectric properties (low κ and high S),36,105–
108 such as Cs2AgBiX6,

105 Cs2AgInX6,
106 Cs3Cu2I5,

36 and
some 2D MHPs.107,108 Here, the main challenge is,
again, inventing suitable doping methods to increase
their doping levels. Doping stability is crucial for ther-
moelectrics, as the high doping levels required may
cause significant structural changes and even damage in
some cases.73 In molecular doping using strong reducing
or oxidizing agents as potential candidates for high dop-
ing levels, chemical damage may occur in defect-prone
MHPs when they bond with uncoordinated metal cat-
ions, subsequently releasing halide ions.73 Therefore,
extra caution is required for establishing dopant selec-
tion rules by considering potential structural and chemi-
cal damages upon doping.

5 | FUTURE PROSPECTS: BEYOND
DOPING AND UNIQUE PROPERTIES

Although this review has mainly dealt with the electri-
cal doping perspectives for MHP thermoelectrics, there
exists ample room for exploring opportunities beyond
doping and adopting compelling methodologies such
as nanostructuring109 and band engineering,110 which
have been key developments in conventional high-
thermoelectric-performance materials. Nanostructuring
MHPs (with intrinsically low thermal conductivity) has
the prospect of further inducing phonon-scattering by
forming nanostructured phases within the bulk mate-
rial.103 In MHPs, hetero-phase impurities have been
studied for light emitters, where luminescent nano-sized
3D phase particles were endotaxially grown within a
bulk 0D matrix.14 They have also been explored for
steering charge transport paths in MHP-based LEDs.111

Both applications may be relevant, but proper band
alignment at the interfaces is crucial to ensure effective
charge transport paths in the bulk. Additionally, a band
engineering approach can be proposed to maximize
anisotropy in band dispersion (i.e., anisotropic effective
masses) and achieve multi-band convergence for acces-
sing multi-band transport via degeneracy at band
extrema, which has rarely been discussed in MHPs.
Therefore, while the current research priority for MHP
thermoelectrics should remain on increasing power fac-
tor through effective doping methods, combining these
strategies with nanostructuring and band engineering
could potentially lead to significant improvements in
their thermoelectric performance.

The thermoelectric potential of MHPs is not limited
to the ultimate goal of constructing highly efficient ther-
moelectric generators but can be extended to maximize
their unique material properties. Notably, the ease of
halide ion migration112,113 is both a challenge and a new
avenue for opportunities. Halide ions can actively partici-
pate in redox reactions at the interface with the metal
electrode, resulting in electrochemical reactions at the
electrode/channel interfaces,114 which can significantly
impact both the stability and performance of thermoelec-
tric devices. However, we propose that this property can be
harnessed to generate electrical power via the thermogalva-
nic effect,115 in which the migration of mobile halide ions
can create an electrochemical potential difference when
subjected to a temperature gradient, subsequently generat-
ing electrical power, if properly controlled. Exploiting the
thermogalvanic effect in MHPs could open new routes as a
low-cost material for solid-state thermogalvanic energy
conversion. In addition, their superior optoelectronic prop-
erties, including high absorption coefficient, slow hot-
carrier cooling,116 and long carrier lifetime117 can offer a
unique physical basis for the unexplored area of photo-
thermoelectric effects,118,119 and designing photovoltaic-
thermoelectric hybrid devices where the waste heat from
solar power conversion can be harnessed as a useful form
of electrical energy, increasing the overall solar energy con-
version efficiency.

Overall, our critical assessment of electrical doping
for MHP thermoelectrics signifies the remaining chal-
lenges and opportunities in the field for better under-
standing doping effects on charge transport and
developing effective doping methods. While potential
solutions can be inspired by the well-established field of
MHP optoelectronics, the required materials and dopant
selection rules are expected to differ significantly for dop-
ing levels of interests in thermoelectrics, mostly marking
unexplored regimes of doping and transport in MHPs.
Therefore, in addition to the main quest for improving
the ZT of the promising material systems, future research
on thermoelectric properties of doped MHPs can reveal
rich underlying charge transport physics in the presence
of charged impurities. Despite the remaining challenges,
this review promotes the promising prospects of MHPs
for thermoelectrics owing to their distinctive material
properties which can be synergistically utilized with the
existing key concepts in the field of conventional thermo-
electrics that can include, or go beyond nanostructuring
and band engineering.
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